Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biotechnol Bioeng ; 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38665049

RESUMO

Arsenic with the scientific name AS is an element that exists everywhere. It is the fourth among the abundant elements in water, the twelfth in the human body, and the twentieth in the earth's crust. This element exists in sulfide, carbonate, and elemental forms. Different names of arsenic are known as white arsenic (As2O3), yellow arsenic (As2S3), and red arsenic (As4S4). Nowadays, due to its unique properties, arsenic has received much attention from researchers for use in the synthesis of arsenic nanoparticles. According to various studies, arsenic nanoparticles are synthesized by various methods, including biological, physical, and chemical, and it has been shown that the synthetic method used is very important because it has a significant effect on their shape, size, and biological function. Arsenic nanoparticles are among the nanoparticles that have attracted the attention of researchers due to their particle potential as well as their anticancer, antitumor, cytotoxic, and antimicrobial applications. Therefore, the aim of this study is to investigate arsenic nanoparticles biosynthesized by different physical, biological, and chemical methods and their biomedical applications.

2.
Infection ; 52(2): 385-402, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38308075

RESUMO

PURPOSE: Over the last decade, surgery rates have risen alarmingly, and surgical-site infections are expanding these concerns. In spite of advances in infection control practices, surgical infections continue to be a significant cause of death, prolonged hospitalization, and morbidity. As well as the presence of bacterial infections and their antibiotic resistance, biofilm formation is one of the challenges in the treatment of surgical wounds. METHODS: This review article was based on published studies on inpatients and laboratory animals receiving phage therapy for surgical wounds, phage therapy for tissue and bone infections treated with surgery to prevent recurrence, antibiotic-resistant wound infections treated with phage therapy, and biofilm-involved surgical wounds treated with phage therapy which were searched without date restrictions. RESULTS: It has been shown in this review article that phage therapy can be used to treat surgical-site infections in patients and animals, eliminate biofilms at the surgical site, prevent infection recurrence in wounds that have been operated on, and eradicate antibiotic-resistant infections in surgical wounds, including multi-drug resistance (MDR), extensively drug resistance (XDR), and pan-drug resistance (PDR). A cocktail of phages and antibiotics can also reduce surgical-site infections more effectively than phages alone. CONCLUSION: In light of these encouraging results, clinical trials and research with phages will continue in the near future to treat surgical-site infections, biofilm removal, and antibiotic-resistant wounds, all of which could be used to prescribe phages as an alternative to antibiotics.


Assuntos
Infecções Bacterianas , Terapia por Fagos , Ferida Cirúrgica , Humanos , Animais , Bactérias , Infecção da Ferida Cirúrgica/prevenção & controle , Infecções Bacterianas/prevenção & controle , Antibacterianos/uso terapêutico
3.
Heliyon ; 10(1): e23679, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38187314

RESUMO

Nowadays nanoparticles (NPs) due to their multidimensional applications in enormous different fields, has become an exciting research topic. In particular, they could attract a noticeable interest as drug deliver with increased bioavailability, therapeutic efficacy and drug specificity. Epigenetic can be considered as a complex network of molecular mechanism which are engaged in gene expression and have a vital role in regulation of environmental effects on ethology of different disorders like neurological disorders, cancers and cardiovascular diseases. For many of them epigenetic therapy was proposed although its application accompanied with limitations, due to drug toxicity. In this review we evaluate two aspects to epigenetic in the field of NPs: firstly, the role of epigenetic in regulation of nanotoxicity and secondly application of NPs as potential carriers for epidrugs.

4.
3 Biotech ; 13(3): 79, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36778767

RESUMO

Evidence shows that nanoparticles exert lower toxicity, improved targeting, and enhanced bioactivity, and provide versatile means to control the release profile of the encapsulated moiety. Among different NPs, inorganic nanoparticles (Ag, Au, Ce, Fe, Se, Te, Zn, etc.) possess a considerable place owing to their unique bioactivities in nanoforms. Selenium, an essential trace element, played a vital role in the growth and development of living organisms. It has attracted great interest as a therapeutic factor without significant adverse effects in medicine at recommended dose. Selenium nanoparticles can be fabricated by physical, biological, and chemical approaches. The biosynthesis of nanoparticles is shown an advance compared to other procedures, because it is environmentally friendly, relatively reproducible, easily accessible, biodegradable, and often results in more stable materials. The effect of size, shape, and synthesis methods on their applications in biological systems investigated by several studies. This review focused on the procedures for the synthesis of selenium nanoparticles, in particular the biogenesis of selenium nanoparticles and their biomedical characteristics, such as antibacterial, antiviral, antifungal, and antiparasitic properties. Eventually, a comprehensive future perspective of selenium nanoparticles was also presented.

5.
Pharmacogenomics J ; 20(4): 574-578, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-31902949

RESUMO

Warfarin is an anticoagulant prescribed in the treatment and prevention of thrombosis. Variation in dose requirements is different for everyone, and genetic factors have an effect on dose variation. Polymorphism of vitamin K epoxide reductase complex 1 (VKORC1) gene is identified as the main genetic factor involved in warfarin dosage requirement variations. This study aims to determine the frequency of VKORC1 polymorphism in patients using warfarin from Kerman city and investigated association between VKORC1 gene polymorphism and patient characteristics with warfarin dose requirement. A total of 112 patients taking warfarin with stable dose requirements enrolled in the study. DNA samples from these patients were genotyped for VKORC1 gene polymorphism by using the polymerase chain reaction restriction fragment length polymorphism method (PCR-RFLP) and examined associations between demographic characteristics (e.g. age, sex, smoking, etc.) and genetic factors with maintenance dose of warfarin. The most common genotype was VKORC1 GA (48.2%). genotype frequency subjects carried VKORC1 GG and AA were 39.3% and 12.5%, respectively. In addition, a significant relationship was found between VKORC1-1639G>A and the daily dose of warfarin (P = 0.011, R2 = 0.080). The frequencies of the VKORC1-1639 A alleles were significantly lower than VKORC1-1639 G alleles and required fewer warfarin dose.


Assuntos
Anticoagulantes/administração & dosagem , Estudos de Associação Genética/métodos , Insuficiência Cardíaca/genética , Polimorfismo Genético/genética , Vitamina K Epóxido Redutases/genética , Varfarina/administração & dosagem , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos Transversais , Feminino , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/epidemiologia , Humanos , Irã (Geográfico)/epidemiologia , Masculino , Pessoa de Meia-Idade , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA